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ABSTRACT: We expand the definitions of power gain, transducer gain, and available gain by
taking harmonic content into account. Furthermore, we show that under special conditions,
these expanded definitions of gain can be expressed in terms of nonlinear large-signal
scattering parameters. Finally, we provide an example showing how these expanded forms of
gain and nonlinear large-signal scattering parameters can provide us with valuable informa-
tion regarding the behavior of nonlinear models. © 2003 Wiley Periodicals, Inc. Int J RF and
Microwave CAE 13: 357–369, 2003.*
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I. INTRODUCTION

Three types of gain are commonly used as figures of
merit for two-port networks — power gain, transducer
gain, and available gain [1]. Power gain G is defined
as the ratio of the power delivered to the load PL

connected at port 2 of the device to the input power
PIN at port 1 of the device

G �
PL

PIN
, (1)

where PL and PIN can be described in terms of wave
variables referenced to some real-valued impedance

PIN �
1
2

�a1�2 �
1
2

�b1�2 (2)

and

PL �
1
2

�b2�2 �
1
2

�a2�2. (3)

Here, ai and bi refer to the complex incident and
reflected power-normalized waves, respectively,
where the subscript i denotes the port number. Trans-
ducer gain GT is defined as the ratio of the power
delivered to the load PL to the power available from
the source PAVS:

GT �
PL

PAVS
. (4)

The power available from the source PAVS is the
maximum power that can be delivered to the network.
This occurs when the input impedance of the termi-
nated network is conjugate matched to the source
impedance, and can be described in terms of power-
normalized waves as

PAVS � PIN��IN��*S �
1
2

�a1�2. (5)
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Available gain GA is defined as the ratio of the power
available from the network PAVN to the power avail-
able from the source PAVS:

GA �
PAVN

PAVS
. (6)

The power available from the network PAVN is the
maximum power that can be delivered to the load.
This occurs when the output impedance of the termi-
nated network is conjugate matched to the load im-
pedance, and can be described in terms of power-
normalized waves as

PAVN � PL��L��*OUT
�

1
2

�b2�2. (7)

One limitation of the gain definitions described in eqs.
(1), (4), and (6) is that they are restricted to the
fundamental operating frequency, and thus do not
take into account energy at higher harmonic frequen-
cies.

In this article, we expand the definitions of power
gain, transducer gain, and available gain by taking
harmonic content into account. Furthermore, we show
that under special conditions, these expanded forms of
gain can be expressed in terms of nonlinear large-
signal scattering parameters, previously introduced in
[2–4]. Together, these figures of merit can be used to
discover valuable information regarding the behavior
of nonlinear models. Specifically, we will examine a
lumped-element model of a pseudomorphic high-elec-
tron-mobility transistor (pHEMT) device operating in
a two-port, common-source configuration. First, we
will look at the nonlinear large-signal scattering pa-
rameters as a function of power for various bias
conditions, and then we will reduce the scattering
parameter data set by calculating the expanded power
gain �, the expanded transducer gain �T, and the
ratio of the power gain confined to the excitation
frequency to that of the overall power gain �1/�.

II. EXPANDED DEFINITIONS OF GAIN

In the case of a sinusoidal input to a two-port nonlin-
ear device, power may be transferred to higher har-
monic frequencies. Thus, we can modify the defini-
tions of power, described in the previous section by
taking into account the harmonic contributions and
summing over all K harmonics considered. First, the
input power PIN given in eq. (2) can be modified to

PIN �
1

2 �
k�1

K

�a1k�2 �
1

2 �
k�1

K

�b1k�2. (8)

Here, aik and bik refer to the complex incident and
reflected power-normalized waves, respectively,
where the subscript i denotes the port number and k
denotes the spectral component number. All waves
must be taken with respect to a real-valued, reference
impedance. Similarly, we can modify the other defi-
nitions as follows:

PL �
1

2 �
k�1

K

�b2k�2 �
1

2 �
k�1

K

�a2k�2, (9)

PAVS �
1

2 �
k�1

K

�a1k�2, (10)

and

PAVN �
1

2 �
k�1

K

�b2k�2. (11)

Eqs. (8–11) are valid under the assumption that the
power in the network is confined to a grid of frequen-
cies that are harmonically related.

Once again, the expanded power gain � is defined
as the ratio of PL to PIN and is given by

� �
PL

PIN
�

1
2

�
k�1
K �b2k�2 �

1
2

�
k�1
K �a2k�2

1
2

�
k�1
K �a1k�2 �

1
2

�
k�1
K �b1k�2

, (12)

the expanded transducer gain �T is defined as the
ratio of PL to PAVS and is given by

�T �
PL

PAVS
�

1
2

�
k�1
K �b2k�2 �

1
2

�
k�1
K �a2k�2

1
2

�
k�1
K �a1k�2

, (13)

and the expanded available gain �A is defined as the
ratio of PAVN to PAVS and is given by

�A �
PAVN

PAVS
�

1
2

�
k�1
K �b2k�2

1
2

�
k�1
K �a1k�2

. (14)
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III. EXPANDED DEFINITIONS OF GAIN
IN TERMS OF NONLINEAR LARGE-
SIGNAL SCATTERING PARAMETERS

In previous work [2–4], we introduced the concept of
nonlinear large-signal scattering parameters. Like
commonly used linear S-parameters, nonlinear large-
signal �-parameters can also be expressed as ratios of
incident and reflected wave variables. However, un-
like linear S-parameters, nonlinear large-signal �-pa-
rameters depend upon the signal magnitude and must
take into account the harmonic content of the input
and output signals since energy can be transferred to
other frequencies in a nonlinear device.

For simplicity, we consider a two-port device ex-
cited at port 1 by a single-tone signal (a11) at a
frequency f1. This condition is commonly encoun-
tered with power amplifiers and frequency doublers,
although the approach can be generalized to any num-
ber of ports with multiple excitations that are harmon-
ically related. In this case, we extract an input reflec-
tion coefficient, given by

�11k1 �
�b1k�
�a11�

���b1k
� k�a11��amn�0 for @m@n��m�1���n�1��,

(15)

where ajl (port j, spectral component number l) and bik

(port i, spectral component number k) refer to the
complex incident and scattered power-normalized
waves, respectively, and �ijkl indicates the nonlinear
large-signal �-parameter. Note that while taking the
ratio of bik to a11, we set the phase reference to (a11).
Using the method of [4] to accomplish this, we sub-
tract k times the phase of (a11) from that of bik, since
the phases are in terms of their respective frequencies.
Note that all phases � are in units of degrees and have
a modulus of 360° (i.e., 0° � � 	 360°). The addi-
tional limitation imposed on eq. (15) is that all other
incident waves other than a11 equal zero. Another
valuable parameter, the forward transmission coeffi-
cient, is similarly extracted as

�21k1 �
�b2k�
�a11�

���b2k
� k�a11��amn�0 for @m@n��m�1���n�1��.

(16)

This parameter provides the designer with a value of
the gain or loss through a device, either at the funda-
mental frequency, or converted to a higher harmonic
frequency. Once again, we set the phase reference to

a11 and impose the limitation that all incident waves
other than a11 equal zero.

When we extract the nonlinear large-signal scat-
tering parameters �11k1 and �21k1, described in eqs.
(15) and (16), only a11 is present and all other a’s are
forced to zero. In this case, eq. (8) is reduced to

PIN �
1

2
�a11�2 �

1

2 �
k�1

K

�b1k�2. (17)

Likewise, eq. (9) becomes

PL �
1

2 �
k�1

K

�b2k�2, (18)

and eq. (10) simplifies to

PAVS �
1
2

�a11�2. (19)

Eq. (11), however, remains unchanged as

PAVN �
1

2 �
k�1

K

�b2k�2, (20)

since it contains no aij terms.
In this case, only a11 is present and all other a’s are

forced to zero, so that the expanded power gain � can
be expressed as

� �
PL

PIN
�

1
2

�
k�1
K �b2k�2

1
2

�a11�2 �
1
2

�
k�1
K �b1k�2

. (21)

Dividing both the numerator and denominator of eq.
(21) by �a11�2, and substituting in eqs. (15) and (16)
gives the power gain in terms of the nonlinear large-
signal scattering parameters:

� �
�

k�1
K ��21k1�2

1 � �
k�1
K ��11k1�2 . (22)

The power gain confined to the nth harmonic fre-
quency is
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�n �
��21n1�2

1 � �
k�1
K ��11k1�2 . (23)

The ratio �n/� expresses the fraction of the power
gain confined to the nth harmonic frequency compared
to the power gain over all of the harmonic frequencies
considered.

Likewise, we can express the expanded transducer
gain and expanded available gain in terms of nonlin-
ear large-signal scattering parameters. With only a11

present and all other a’s forced to zero, �T and �A

reduce to the same expression:

�T � �A � �
k�1

K

��21k1�2. (24)

Here, the transducer, or available, gain confined to the
nth harmonic frequency is

�Tn � �An � ��21n1�2. (25)

Once again, the ratio �Tn/�T, or �An/�A, expresses the
fraction of the transducer, or available, gain confined to
the nth harmonic frequency compared to the transducer,
or available, gain over all of the harmonic frequencies
considered. Note that �n/� � �Tn/�T � �An/�A.

IV. EXAMPLE

Here, we provide an example showing how nonlinear
large-signal scattering parameters along with the ex-
panded definitions of gain, introduced in the previous
section, can be used to discover valuable information
regarding the behavior of a nonlinear model. Specif-
ically, we examine a lumped-element model of a 2 

90 �m GaAs pseudomorphic high electron mobility
transistor (pHEMT) device operating in a two-port,
common-source configuration, shown in Figure 1.
The pHEMT model was developed by Cidronali et al.
[5, 6] using S-parameter measurements and electro-
magnetic simulations of the device layout.

Figure 1. Circuit diagram of a pHEMT device operating in a two-port, common-source config-
uration.
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First, we will look at �11k1 and �21k1 as a function
of power for various bias conditions, and then we will
reduce the �-parameter data set by calculating the
power gain �, the transducer gain, �T, and the ratio
of the power gain confined to the first harmonic to that
of the overall power gain �1/�. We examine the
model operating at a frequency of 5 GHz and powers
ranging from a small-signal level of �20 dBm to a
level of 10 dBm, which is close to the maximum
device rating. Since the model is valid for an n-
channel device, the drain is biased positively with
respect to the common source. In this case, we choose
VDS � 3 V. The gate is biased negatively with respect
to the source since this condition controls the width of
the depletion region and blocks part of the conducting
channel region. Here, we vary VGS from 0.0 V to �1.2
V in steps of 0.2 V.

We can easily determine the two-port, nonlinear
large-signal scattering parameters, described in eqs.
(7) and (8), as a function of power and bias using a
commercial harmonic balance simulator with all a’s
other than a11 forced to zero. Figure 2 plots the
magnitudes of �11k1 for the first four harmonics (k �
1, 2, 3, and 4). We see that ��1111� remains relatively
flat at all bias conditions with varying input power
�a11�. The value of ��1111� decreases as VGS decreases
from 0 V to �0.2 V, reaches a minimum of �2.325
dB at VGS � �0.2 V, and then increases as VGS is
further decreased from �0.2 V to �1.0 V. The pa-
rameters ��1121�, ��1131�, and ��1141� generally in-
crease with input power at all bias conditions. This
reveals that as the input power is increased, more
energy is converted to higher harmonic frequencies
and appears at port 1.

Figure 3 plots the magnitudes of �21k1 for the first
four harmonics (k � 1, 2, 3, and 4). At small input
signals, ��2111� increases as VGS decreases from 0 V
to -0.4 V, reaches a maximum of 15.481 dB at VGS �
�0.4 V, and then decreases as VGS is further de-
creased from �0.4 V to �1.0 V. The parameter
��2111� remains relatively flat and then gradually de-
creases with increasing �a11� for values of VGS from 0
V to �0.6 V. At VGS less than �0.6 V, ��2111�
actually increases with increasing �a11� due to self-
biasing. We also see that ��2121�, ��2131�, and ��2141�
generally increase with input power at all bias condi-
tions. This reveals that as the input power is increased,
some of the energy converted to higher harmonic
frequencies appears at port 2.

Since the nonlinear large-signal scattering param-
eters are complex quantities, the phase data are also
plotted in Figure 4 for VGS � 0.0, �0.4, and �1.0 V.

To gain some physical insight into the pHEMT
model, we can examine the nonlinear large-signal
�-parameter data near pinch-off (VGS � �1.0 V and
VDS � 3 V) and near IDS � IDSS (VGS � 0 V and VDS

� 3 V). In these two regions, the second harmonic
content is maximum (�2121 � �21k1 for k � 2),
which can be seen in Figure 3. Near the pinch-off
region, the device draws current only for the positive
part of the gate voltage waveform, which results in a
clamped waveform drain current, while near IDS �
IDSS, the device saturates at the positive part of the
gate voltage waveform and the device draws current
only for the negative portion. Thus, taking the Fourier
transform gives even harmonics of the same ampli-
tude in both cases, but they are 180° out of phase.
From Figure 4, we can see that near pinch-off (VGS �
�1.0 V), the phase of �2121 is approximately 160°,
while near IDS � IDSS (VGS � 0 V), the phase of �2121

is approximately �50°. The difference in phase is
about 210°, which is close to the expected value of
180°.

An additional benefit of examining the nonlinear
large-signal �-parameters of a device is that having
both the magnitude and phase of the harmonics is
critical in the design of high-efficiency amplifiers and
frequency multipliers.

Rather than looking at numerous graphs of nonlin-
ear large-signal scattering parameters, we can get a
more concise view of the modeled behavior of a
device by reducing the nonlinear large-signal �-pa-
rameter data set into the compact expression of power
gain �. Figure 5 plots the calculated values of �
using eq. (22) for K � 4, as a function of power for
VGS varying from 0.0 V to �1.2 V. At small signals,
the power gain increases as VGS decreases from 0 V to
�0.4 V. The power gain reaches a maximum of 19.72
dB at VGS � �0.4 V, and then decreases as VGS is
further decreased from �0.4 V to �1.2 V. This is
consistent with the fact that the trans-conductance gm,
which is proportional to Y21 and hence S21, peaks at a
bias of VGS � �0.4 V. We can also see from Figure
5 that the gain stays relatively flat and then gradually
decreases with increasing �a11� for values of VGS from
0 V to �0.6 V. At VGS less than �0.6 V, the gain
increases with increasing �a11� due to self-biasing and
harmonic production.

We can also reduce the nonlinear large-signal
�-parameter data set by using the compact expression
of transducer gain �T. Figure 6 plots the calculated
values of �T using eq. (24) for K � 4, as a function
of power for VGS varying from 0.0 V to �1.2 V. At
small signals, the power gain increases as VGS de-
creases from 0 V to �0.4 V. The transducer gain
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Figure 2. Magnitude of �11k1 as a function of input power for a nonlinear lumped-element model
of a 2 
 90 �m GaAs pHEMT device operating at 5 GHz and a bias of VDS � 3 V and VGS � 0.0,
�0.2, �0.4, �0.6, �0.8, and �1.0 V.
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Figure 3. Magnitude of �21k1 as a function of input power for a nonlinear lumped-element model
of a 2 
 90 �m GaAs pHEMT device operating at 5 GHz and a bias of VDS � 3 V and VGS � 0.0,
�0.2, �0.4, �0.6, �0.8, and �1.0 V.
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Figure 4. Phase of �11k1 and �21k1 as a function of input power for a nonlinear lumped-element
model of a 2 
 90 �m GaAs pHEMT device operating at 5 GHz and a bias of VDS � 3 V and VGS

� 0.0, �0.4, and �1.0 V.



Figure 5. Expanded power gain � as a function of input power for a nonlinear lumped-element
model of a 2 
 90 �m GaAs pHEMT device operating at 5 GHz and a bias of VDS � 3 V and VGS

� 0.0, �0.2, �0.4, �0.6, �0.8, �1.0, and �1.2 V. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Figure 6. Expanded transducer gain �T as a function of input power for a nonlinear lumped-
element model of a 2 
 90 �m GaAs pHEMT device operating at 5 GHz and a bias of VDS � 3
V and VGS � 0.0, �0.2, �0.4, �0.6, �0.8, �1.0, and �1.2 V. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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reaches a maximum of 15.48 dB at VGS � �0.4 V,
and then decreases as VGS is further decreased from
�0.4 V to �1.2 V. And, similar to power gain, the
transducer gain stays relatively flat and then gradually
decreases with increasing �a11� for values of VGS from
0 V to �0.6 V. At VGS less than �0.6 V, the trans-
ducer gain increases with increasing �a11� due to self-
biasing and harmonic production.

Comparing the plots of power gain and transducer
gain in Figures 5 and 6, we can see that the values of
transducer gain are less than those of power gain, due
to the large values of �1111 which inflate the values of
power gain. Another difference to note is that the
power gain at VGS � �0.4 V is always greater than at
VGS � �0.2 V, but the transducer gain at VGS � �0.4
V is only greater than at VGS � �0.2 V up to �a11� �
�2.6 dBm. At higher input powers, the transducer
gain is slightly higher at VGS � �0.2 V than at VGS �
�0.4 V.

Figure 7 plots the ratio of the power gain confined
to the first harmonic to that of the overall power gain,
�1/�. Recall that �1/� � �T1/�T. At small signals,
�1/� is relatively high for all values of VGS, but is at
a maximum of 0.9958 for VGS � �0.4 V. As �a11�
increases, �1/� remains relatively high for VGS at

�0.2 V and �0.4 V. At VGS less than �0.4 V, �1/�
decreases dramatically with increasing �a11� since
much of the energy in the device is converted to
higher harmonic frequencies. In fact, at VGS � �1.2
V, �1/� drops to 0.731.

From Figures 5, 6, and 7, we can clearly see that
the optimum gate-to-source bias condition is near VGS

� �0.4 V for the device at VDS � 3 V, where �, �T,
and �1/� are highest. Furthermore, if we look at the
power gain at this particular bias condition, shown in
Figure 8, we find the 1-dB gain compression point to
be �1dB � 18.716 dB, which occurs at �a11� � 1.40
dBm.

Also shown in Figure 8 is the traditional power
gain G. For this example, where a11 is the only
incident wave present, G can be expressed in terms of
nonlinear large-signal scattering parameters as:

G �
��2111�2

1 � ��1111�2 . (26)

We see from Figure 8 that at small input signals �
and G are nearly identical, but at higher powers � is
greater than G since the traditional power gain does

Figure 7. The ratio �1/� as a function of input power for a nonlinear lumped-element model of
a 2 
 90 �m GaAs pHEMT device operating at 5 GHz and a bias of VDS � 3 V and VGS � 0.0,
�0.2, �0.4, �0.6, �0.8, �1.0, and �1.2 V. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]
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not take into account the power generated at higher
harmonic frequencies. Using G, we get the same 1-dB
gain compression point of G1dB � 18.716 dB, but it
occurs at �a11� � 0.78 dBm.

V. CONCLUDING REMARKS

We expanded the definitions of power gain, trans-
ducer gain, and available gain by taking harmonic
content into account, and showed that under special
conditions, this generalized power gain can be ex-
pressed in terms of nonlinear large-signal scattering
parameters. We provided an example showing how
the expanded definitions of gain and nonlinear large-
signal scattering parameters can be used to examine
the behavior of a nonlinear model by simply perform-
ing a harmonic-balance simulation with all a’s other
than a11 forced to zero. Looking at the nonlinear
large-signal scattering parameters has given us an
in-depth view of the modeled behavior by allowing us
to separate out the input reflection coefficients and

transmission coefficients for each of the frequency
components, while reducing the nonlinear large-sig-
nal scattering parameter data set into the compact
expressions of power gain �, transducer gain �T, and
the ratio �1/�, thus giving us a more concise view of
the modeled behavior.

Although we generated nonlinear large-signal scat-
tering parameters by performing a harmonic-balance
simulation with all a’s other than a11 forced to zero, it
is important to note that we can extract these param-
eters indirectly through measurements. In references
[2–3], we have shown a method for doing this. Spe-
cifically, we trained an artificial neural network
(ANN) with multiple measurements made on a device
using a nonlinear vector network analyzer [7–8]
equipped with a second source. Once the ANN was
trained, we extracted the nonlinear large-signal scat-
tering parameters by interpolating from the measured
results for nonzero values of amn [(m � 1) ∧ (m � 1)]
to the desired values for amn [(m � 1) ∧ (m � 1)]
equal to zero.

Figure 8. The 1-dB gain compression point for a nonlinear lumped-element model of a 2 
 90 �m
GaAs pHEMT device operating at 5 GHz and a bias of VDS � 3 V and VGS � �0.4 V. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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